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Abstract—We describe the scope and initial efforts of Open-
ROAD, a project in the DARPA IDEA program that pursues
open-source tools for 24-hour, “no human in the loop” digital
layout generation across integrated circuit, package and board
domains. If successful, OpenROAD will help realize the IDEA
goal of “democratization of hardware design”, by reducing
cost, expertise, schedule and risk barriers that confront system
designers today. Several novel technical directions follow directly
from the IDEA program’s 24-hour, no-humans goals. These
include (i) enablement of pervasive machine learning in and
around design tools and flows, (ii) parallel search and optimiza-
tion to exploit available cloud resources, (iii) partitioning and
problem decomposition to reduce solution latency, and (iv) layout
generation methodologies that provide “freedoms from choice”
without undue loss of design quality. Further, the development of
open-source, self-driving design tools is in and of itself a “moon
shot” with numerous technical and cultural challenges.

I. INTRODUCTION

Even as hardware design tools and methodologies have

advanced over the past decades, the semiconductor industry

has failed to control product design costs, as depicted in

Figure 1. Today, barriers of cost, expertise and unpredictability

(risk) block designers’ access to hardware implementation in

advanced technologies. Put another way: hardware system

innovation is stuck in a local minimum of (i) complex and

expensive tools, (ii) a shortage of expert users capable of using

these tools in advanced technologies, and (iii) enormous cost

and risk barriers to even attempting hardware design.

Particularly in the digital integrated-circuit (IC) domain,

layout automation has been integral to the design of huge,

extremely complex products in advanced technology nodes.

However, a shortfall of design capability – i.e., the ability to

scale product quality concomitant with the scaling of underly-

ing device and patterning technologies – has been apparent for

over a decade in even the most advanced companies [2]. Thus,

to meet product and schedule requirements, today’s leading-

edge system-on-chip (SoC) product companies must leverage

specialization and divide-and-conquer across large teams of

designers: each individual block of the design is handled by a

separate subteam, and each designer has expertise in a specific

facet of the design flow. DoD researchers and development

teams do not have resources to execute such a strategy, and

hence see typical hardware design cycles of 12-36 months.

Fig. 1. Design technology crisis.

A. IDEA and the OpenROAD Project

To overcome the above limitations and keep pace with

the exponential increases in SoC complexity associated with

Moore’s Law, the DARPA IDEA program aims to develop

a fully automated “no human in the loop” circuit layout

generator that enables users with no electronic design ex-

pertise to complete physical design of electronic hardware.

The OpenROAD (“Foundations and Realization of Open,

Accessible Design”) project [17] was launched in June 2018 as

part of the DARPA IDEA program. OpenROAD’s overarching

goal is to bring down the barriers of cost, expertise and

unpredictability that currently block system creators’ access

to hardware implementation in advanced technologies. With

a team of performers that includes Qualcomm, Arm, and

multiple universities led by UC San Diego, OpenROAD seeks

to develop a fully autonomous, open-source tool chain for

digital layout generation across die, package and board, with

initial focus on the RTL-to-GDSII phase of system-on-chip

design. More specifically, we aim to deliver tapeout-capable

tools in source code form, with permissive licensing, so as

to seed a future “Linux of EDA” (i.e., electronic design
automation).

Three innovative base technologies underlie the OpenROAD

team’s strategy to achieve no-human-in-loop (NHIL), 24-

hour turnaround time (TAT). First, machine learning based

modeling and prediction of tool and flow outcomes will enable

the tool auto-tuning and design-adaptivity required for NHIL,

new optimization cost functions in EDA tools, and new tool



Fig. 2. Design complexity.

knobs that tools may expose to users. Second, extreme parti-
tioning strategies for decomposition will enable thousands of

tool copies running on cloud resources to maximize success

within human, CPU, schedule bounds. Quality loss from

decomposition is recovered with improved predictability of

flow steps, along with stronger optimizations. Third, paral-
lel/distributed search and optimization will leverage available

compute resources (e.g., cloud) to maximize design outcomes

within resource limits, and in the face of noise and chaos

in the behavior of complex metaheuristics. A complementary

precept is to reduce design and tool complexities through

“freedoms from choice” in layout generation; this can increase

predictability and avoid iterations in the design process. The

synergy of base technologies and restrictions of the layout

solution space is illustrated in Figure 2.

B. A New Paradigm

The contributions and approach of OpenROAD seek to

establish a new paradigm for EDA tools, academic-industry

collaboration, and academic research itself. OpenROAD aims

to finally surmount ingrained, “cultural” and “critical mass /

critical quality” barriers to establishing an open-source ethos

in the EDA field. To start the project, we bring (i) signifi-

cant initial software IP including donated source code bases,

and a commercial static timing analysis tool; (ii) a signifi-

cant set of academic software IP and skillsets; (iii) leading

SoC and IP know-how and guidance from industry partners

Qualcomm and Arm; (iv) an in-built Internal Design team

(U. Michigan) to provide de facto product engineering and

alpha customer functions; and (v) a broad agenda of industry

and academic outreach. Furthermore, OpenROAD derives its

“Base Technologies” efforts directly from the IDEA program

requirements (no-humans, 24-hours, no loss of PPA quality).

We view the cohesive integration of machine learning, problem

partitioning and decomposition, and parallel/distributed search

and optimization as essential to reaching the IDEA target.

This paper. The remainder of this paper will outline the

current status of OpenROAD’s GitHub-deployed tools and

flow. Early proof points and calibrations in the realm of digital

IC layout generation (“RTL-to-GDSII”) have been obtained in

multiple foundry design enablements including 16nm FinFET

technology.

Fig. 3. The OpenROAD flow.

II. CURRENT STATUS: LAYOUT TOOL CHAIN

OpenROAD’s layout generation tool chain consists of a set

of open-source tools that takes RTL Verilog, constraints (.sdc),

liberty (.lib) and technology (.lef) files as input, and aims to

generate tapeout-ready GDSII file. Figure 3 illustrates the flow

of tools corresponding to individual OpenROAD tasks. These

include logic synthesis (LS), floorplan (FP) and power delivery

network (PDN) generation, placement, clock tree synthesis

(CTS), routing and layout finishing.

A. Logic Synthesis

The major gap in open-source LS is timing awareness and

optimization. OpenROAD has explored two avenues toward

enablement of timing-driven synthesis. First, we use machine

learning techniques to enable autonomous design space ex-

plorations for timing-driven logic optimization. It is often

the case that synthesis scripts contain tens of commands in



order to make a design meet its timing and area goals. These

scripts are crafted by human experts. To produce best synthesis

scripts that are tuned to individual circuits, we design machine

learning agents that automatically generate step-by-step syn-

thesis scripts to meet target timing and delay goals. Second,

we enable physical-aware logic synthesis by integrating the

RePlAce [20] placement tool into the logic synthesis flow,

whereby global placement-based wire capacitance estimates

are used within logic synthesis to improve timing results.

Existing academic tools are oblivious to the outcomes of

subsequent steps in the design flow, and our ultimate goal is

to feed back wiring estimates as they are refined in physical

design steps (e.g., standard-cell placement and global routing)

to improve synthesis results.

B. Floorplan and PDN

Floorplanning and power delivery network synthesis are per-

formed by TritonFPlan, which has two major components. The

first component is integer programming-based macro block

packing that is aware of macro-level connectivity and is seeded

by a mixed-size (blocks and standard cells) global placement.

The second component is Tcl-based power delivery network

(PDN) generation following a safe-by-construction approach.

TritonFPlan requires the user to specify several config files,

e.g., IP global.cfg and IP local.cfg capture macro packing

rules, and PDN.cfg captures safe-by-construction metal and

via geometry information. These config files are necessitated

by the inability of academic open-source tool developers (or,

their tools) to see complete unencrypted design enablements

from the foundry. We discuss this below in Section IV. The

TritonFPlan tool uses mixed-size placer (RePlAce) for its

initial global placement. The generated macro global locations

provide a starting point from which multiple floorplan solu-

tions are created. For each of the generated floorplan solutions

with fixed macros and PDN, we use our placer (RePlAce)

again, to determine the best floorplan according to an estimated

total wirelength criterion. Limitations include support of only

rectangular floorplans, and macro counts less than 100.

C. Placement

RePlAce [3, 20] is a BSD-licensed open-source analytical

placer based on the electrostatics analogy. In OpenROAD,

RePlAce is used for mixed-size (macros and cells) placement

during floorplanning, for standard-cell placement within a

given floorplan, and during clock tree synthesis (CTS) [18] for

clock buffer legalization. Timing-driven placement is achieved

with integration of FLUTE [5] and OpenSTA [16], along with

a signal net reweighting iteration [6]. The timing-driven TD-

RePlAce tool takes input in standard LEF/DEF, Verilog, SDC

and Liberty formats, and incorporates a fast RC estimator for

parasitics extraction. Ongoing efforts aim to enable routability-

driven mode using commercial format (LEF/DEF/Verilog).

Figure 4 shows the RePlAce placement of a small RISC-

V based block (foundry 16nm technology) produced by the

University of Michigan internal design advisors subteam.

Fig. 4. Foundry 16nm RISC-V based design block from the University of
Michigan, after RePlAce mixed-size placement. Red color indicates macros
and blue color indicates standard cells.

D. Clock Tree Synthesis

TritonCTS [7, 18] performs clock tree synthesis (CTS) for

low-power, low-skew and low-latency clock distribution, based

on the GH-Tree (generalized H-Tree) paradigm of [7]. A

dynamic programming algorithm finds a clock tree topology

with minimum estimated power, consistent with given latency

and skew targets. Linear programming is used to perform sink

clustering and clock buffer placement. Leaf-level routing may

be performed using either the single-trunk Steiner tree or the

Prim-Dijkstra [1] algorithm.

In the layout generation flow, TritonCTS has interfaces

with the placer (RePlAce) and the router (TritonRoute [9]).

The placer is used for legalization of inserted clock buffers.

The router maps sink pins to GCELLs that should be used

for clock tree routing. TritonCTS inputs are LEF, placed

DEF, placed gate-level Verilog, a configuration file and library

characterization files. (For each foundry enablement, a one-

time library characterization is needed. Currently, this library

characterization is expected to be performed by some outside

entity (foundry or tool user) using commercial EDA tools.)

TritonCTS outputs are “buffered” placed DEF, “buffered”

gate-level Verilog, and clock tree global routing in ISPD18

route guides format [14]. TritonCTS is publicly available on

GitHub [18]. Early validations have been made using 16nm

and 28nm foundry enablements. Improvements to handle mul-

tiple clock sources, non-default routing rules, etc. are ongoing.

E. Routing

TritonRoute [9] consumes LEF and placed DEF, then per-

forms detailed routing for both signal nets and clock nets given

a global routing solution in route guide format [14]. Prior

to the detailed routing, TritonRoute preprocesses the global

routing solution using a fast approximation algorithm [10]

to ensure a Steiner tree structure for each net. Thus, con-

gestion and wirelength are minimized while net connectivity

is preserved in detailed routing stage. The detailed routing

problem is then iteratively solved on a layer-by-layer basis,

and each layer is partitioned into disjoint routing panels.

The panel routing is formulated as a maximum weighted

independent set (MWIS) problem and solved in parallel using

a mixed integer linear programming (MILP)-based approach.



The MWIS formulation optimally assigns tracks considering

(i) intra- and inter-layer connectivity, (ii) wirelength and via

minimization, and (iii) various design rules. By an alternating

panel routing strategy with multiple iterations, inter-panel and

inter-layer design rules are properly handled and track assign-

ments are maximized. To date, TritonRoute supports major

TSMC16 metal and cut spacing rules, i.e., LEF58 SPACING,

LEF58 SPACINGTABLE and LEF58 CUTCLASS. An early

evaluation shows approximately 10× reduction of spacing

rule violations in a TSMC16 design block. Detailed routing

flow with integration and optimization of local net routing is

the next step towards a 100%-completion, DRC-clean layout

capability.

III. CURRENT STATUS: OTHER ELEMENTS

Other elements of the OpenROAD project under develop-

ment include the above-mentioned “base technologies” (ma-

chine learning, partitioning, parallel optimization), a design

performance analysis backplane (parasitic extraction, static

timing analysis, and power/signal integrity), cloud infras-

tructure for tool/flow deployment and machine learning, the

“internal design advisors” task, and corresponding self-driving

layout generation capability in the package and PCB domains.

This section outlines the status of several of these project

elements.

A. Static Timing Analysis

OpenSTA [16] is a GPL3 open-sourced version of the

commercial Parallax timer. The Parallax timing engine has

been offered commercially for nearly two decades, and has

been incorporated into over a dozen EDA and IC compa-

nies’ timing analysis tools. OpenSTA is publicly available

on GitHub [16] since September 2018. The developer, James

Cherry, has added Arnoldi delay calculation, power reporting

and other enhancements since the original release. OpenSTA

has been confirmed to support multiple advanced foundry

nodes, and it supports standard timing report styles. To date,

the OpenSTA timer has been integrated into TD-RePlAce

(timing-driven enhancement of RePlAce), physical-aware syn-

thesis (Yosys [11]) and a gate-sizing tool (TritonSizer [19]).

Figure 5(a) shows a comparison of endpoint timing slacks

from OpenSTA and a commercial signoff timer. Figure 5(b)

shows the distribution of endpoint slack differences between

OpenSTA and the commercial signoff timer.

B. Parasitic Extraction

In OpenROAD’s approach, the parasitic extraction (PEX)

tool processes a foundry process design kit (PDK) to build

linear regression models for wire resistance, ground capaci-

tance, and coupling capacitances to wires on the same layer,

or in the adjacent layers above and below. A basic use case is

for another tool in the flow (e.g., CTS, global routing, timing

analysis) to call PEX, providing an input DEF file that consists

of the wire of interest and its neighbors. The output is provided

as a SPEF file that contains the extracted parasitics. Figure 6(b)

compares the actual and predicted values of the resistance and

Fig. 5. Comparison between OpenSTA and a leading signoff timer (Signoff)
for a small 28nm testcase. (a) Endpoint slacks of OpenSTA vs. Signoff timer.
(b) Histogram of endpoint slack differences between OpenSTA and Signoff
timer.

capacitance obtained from test nets to validate the regression

model, and shows a good fit. Anticipated evolutions include

interfacing the PEX functions to a possible future IDEA-

wide physical design database, and extending the model-fitting

approach to achieve low-overhead parasitic estimators for use

in timing-driven placement, crosstalk estimation during global

routing, etc.

C. Power Integrity

A key goal of our power integrity analysis effort is to enable

single-pass, correct-and-safe-by-construction specification of

the power delivery network (PDN) layout strategy across

the SoC. Our power delivery network (PDN) synthesis tool

tiles the chip area into regions, and selects one of a set of

available PDN wiring templates (cf. the “config” files noted

in the Floorplanning discussion, above) in each region. These

templates are stitchable so that they obey all design rules when

abutted. The PDN tool takes in a set of predefined templates

(Figure 6(a)), an early (floorplanning-stage) placed DEF for

a design, and available power analysis information (e.g., our

OpenSTA tool can provide instance-based power reporting).

A trained ML model then determines a safe template in each

region. An early prototype shows that the ML-based approach

can successfully deliver a PDN to satisfy a given (e.g., 1mV

static) IR drop specification.

D. Cloud Infrastructure

For users to take advantage of OpenROAD tools as well as

tools developed by other collaborators, a cloud infrastructure

effort aims to provide an end-to-end seamless user experience.

In our cloud deployment, users subscribe their Git repo to our

cloud system. Once a design change is pushed to the Git repo,

the design is automatically compiled by the OpenROAD flow

and the user receives a notification by email when the flow

is complete. The user can then download the outcome files

through a web browser. If needed, the user can also monitor

the progress of the flow on our web-based front end. Our cloud

deployment is elastic as it leverages more computing resources

when more users log into the service, or when a user requests

parallel processing capabilities. For instance, the service can

elastically deploy multiple machines in order to run a tool

(e.g., placer) with multiple random seeds to obtain a better



(a) (b)

Fig. 6. (a) Example PDN templates; and (b) validation of the regression
model for R, C in PEX.

result within a given wall time budget. Or, in conjunction with

global design partitioning, the cloud deployment can run each

design partition in parallel on a cloud instance, to maximize

parallel speedup and minimize design turnaround time.

E. METRICS 2.0

To enable large-scale applications of machine learning (ML)

and ultimately a self-driving OpenROAD flow, we are develop-

ing METRICS 2.0 [8], which can serve as a unified, compre-

hensive design data collection and storage infrastructure (see

[13]). A METRICS 2.0 dictionary provides a standardized list

of metrics suitable for collection during tool/flow execution,

to capture key design parameters as well as outcomes from

various tools in the design flow. We also propose a system

architecture based on JavaScript Object Notation (JSON) for

data logging, and MongoDB database [4] for data storage and

retrieval of the metrics. Figure 7 illustrates the METRICS 2.0

system architecture. The proposed architecture eliminates the

need to create database schemas and enables seamless data

collection. METRICS 2.0 is tightly coupled with machine-

learning frameworks such as TensorFlow, which provides easy

interfaces to read and write into MongoDB, and enables fast

deployment of machine learning algorithms.

F. Early SoC Planning

In light of NHIL and 24-hour turnaround time requirements,

it is important to initiate the OpenROAD tool chain with with

reliable tentative floorplans as flow starting points, to minimize

the likelihood of run failures. This is a key link between the

“system-level design” (IDEA TA-2) and “layout generation”

(IDEA TA-1, which we address in OpenROAD). Early floor-

plan estimates for the SoC can be enhanced by embedding

physical implementation information in each IP (e.g., us-

ing the vendor extension mechanism within industry-standard

IP-XACT descriptions), and by making use of technology-

and tool chain- specific parameters and statistical models.

Combining and elaborating such information enables early
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Fig. 7. Overall METRICS 2.0 system architecture.

area and performance estimates that can indicate doomed-

to-fail floorplan candidates or suggest design implementation

fine-tuning (hard-macro placement, grouping, register slice

insertions, etc.) in viable floorplans.

G. Integration and Testing

The individual tools described above comprise a tool chain

that produces an implemented design ready for final verifi-

cation and fabrication. Initial platform support is targeted for

CentOS 6, with tool- and flow-specific support maintained at

[17]. To evaluate the flow, non-tool developer entities in our

team (i.e., U. Michigan, Qualcomm and Arm) perform fine-

grained analyses on our tool outputs and provide target calibra-

tion metrics for tool developers. Here, we leverage a testcase

suite based around existing designs that have previously been

taped out; these designs range across complexity (from small

blocks to whole chips) and process (e.g., 16nm and 65nm).

Our suite of testcases also includes cutting-edge complex SoCs

that are currently in development. A continuous integration test

suite validates the tools individually during development and

tracks regression metrics and feature impact.

IV. LOOKING FORWARD

Our near-term efforts will continue development of the tools

and flow described above. More broadly, we will also seek to

address various technical, structural and cultural challenges

that have become apparent even at project outset.

One key technical challenge is to develop design automation

technologies as well as layout generation flows that can co-

optimize across the SoC, package (PKG) and PCB domains.

Today, SoC, PKG and PCB tools and flows are largely disjoint;

weeks if not months are required to converge across the three

designs with manual iterations. To deliver NHIL, 24-hour

turnaround time in the PKG and PCB domains, a Unified

Planning Tool that seamlessly coordinates among the three

databases and enables quick iterations is essential. Figure 8

illustrates our envisioned Unified Planning Tool. The Unified



Planning Tool would also include optimization engines, using

analytical and ML approaches to evaluate the complex trade-

offs across the three design spaces.

Fig. 8. Illustration of Unified Planning Tool.

Some other technical challenges include the following. (1)

The “small and expensive” nature of design process data

in IC design – where obtaining a single data point might

require three weeks to run through a tool flow – challenges

machine learning and development of “intelligent” tools and

flows. (2) The need for new, common standards for measuring

and modeling of hardware designs and design tools must be

compatible with the IP stances of foundries and commercial

EDA; this may shape the future opening of a “Linux of

EDA” to broad participation. And, (3) it will be difficult to

illuminate the critical junctures where “human intelligence” is

now required, yet must be replaced by “machine intelligence”,

in the hardware design process.

Several structural challenges stem from our status as aca-

demic tool developers of a tool chain that must produce

tapeout-ready GDSII. (1) OpenROAD tools will likely not be

foundry-qualified, which implies that OpenROAD tools and

tool developers will not be able to read encrypted advanced-

node PDKs. To achieve safety and correctness by construction

of the tapeout database, OpenROAD tools require config
files and one-time generation of “OpenROAD kit” elements,

for each foundry enablement. (2) OpenROAD’s analyses and

estimators for timing, parasitics and power/signal integrity are

not “signoff” verifiers. Thus, additional performance guard-

bands are required throughout the layout generation flow.

And, post-OpenROAD verifications may be performed by de-

signers and/or foundries. (3) OpenROAD tools are developed

and released by non-commercial entities. Commercial EDA

vendors receive bug/enhancement requests accompanied by a

testcase that exhibits the bug or behavior at issue. By contrast,

bug reports that we receive are unlikely to be accompanied

by testcases due to blocking NDA / IP restrictions. This

complicates the bug-fixing and enhancement process.

Finally, our outreach efforts seek culture change and en-

gagement across the community of potential developers and

tool users. For example, in the academic research world, a

lab’s code is its competitive advantage (or, potential startup),

and liberal open-sourcing is still rare (cf. [12]). We hope that

OpenROAD and the IDEA/POSH programs help drive culture

change in this regard. With regard to tool users, we observe

that commercial EDA tools are invariably driven to production-

worthiness by “power users” – i.e., paying customers who

have deep vested interests in the capability and maturation of

a given tool. Traditionally, power users expose a new tool to

leading-edge challenges and actively drive tool improvement.

For OpenROAD, finding our “power users” is a critical need,

especially since they would be able to improve tools and flows

at the source-code level.

V. CONCLUSION

In this paper, we have reviewed the scope and status of

OpenROAD, a DARPA IDEA project that aims to develop

a self-driving, open-source digital layout implementation tool

chain. The above is only a snapshot, taken six months into

a four-year project. We welcome feedback, participation and

contributions.
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